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A class of dynamic objects of general form subjected to rapidly changing, and, in particular, high- 

frequency quasiperiodic external interactions is investigated. Conditions under which the system of 

equations of motion can be reduced to standard form are obtained. A transformation which allows an 

asymptotic analysis to be made using methods of separation of motion (the averaging method) which 

generalizes existing transformations is realized. In the first approximation the corresponding system is 

obtained and the autonomous system for slow displacements is studied qualitatively. The approach is 

illustrated by solving a number of problems for a system with one degree of freedom and variable 

parameters. Systems such as a non-linear oscillator and a simple pendulum are considered. External 

torques, kinematic excitation by vibrations of the point of suspension and parametric excitation by 

changing the length of the pendulum are taken as the high-frequency periodic interactions. Other 

models are considered. 

1. INITIAL ASSUMPTIONS AND FORMULATIONS OF THE PROBLEM 

We will consider a non-linear dynamical system of fairly general form. We shall assume that 
the mechanical object under investigation is acted upon by rapidly changing external forces, in 
particular high-frequency ones. This will be signified by a scalar parameter h such that h%-1 
after transforming the system to dimensionless variables and parameters. To fix our ideas, we 
consider the Cauchy problem 

x” = F(Af, x, x; h), X(f,) = x0, xq,) = V-J (1.1) 

with a large parameter h. 
Here X, X = dXldt, and F are vectors of arbitrary dimensions n b 1, and r,, X0, V” are the 

initial data for t, X, x’, respectively. the large parameter h characterizes the relative rate of 
change of external interactions (forces, system parameters, etc.). The details of the structure 
and the smoothness of F will be specified below after certain transformations of (1.1). 

We introduce the fast time 8 =ht. Problem (1.1) is then transformed into the following 
Cauchy problem with a small parameter E = h-’ > 0 (see [l-3]) 

X” =f(e, X, x’, E), 8 3 eo, x(e,) = x0, f(eo) = ~0 (1.2) 
x(e) =x(f), x0 =x0, 6 ev', f = &2F(8, x, &--IX’, E--l) 
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In what follows we will consider (1.2) under the following assumptions regarding the 
properties of f 

fee, X, xf, E) = &p(e, X, x’) + Gg(e, x, &-lx’, E) (1.3) 

Here p and LJ are either bounded and continuous as functions of the argument 8 > 8, or admit 
of uniform averages with respect to 8. This requirement will be refined and relaxed below. It is 
assumed that p and q are sufficiently smooth and regular as functions of x in a bounded open 
domain x E DX. It is also assumed that p is smooth as a function of the derivative u = x’ in an E- 
neighbourhood of u = 0, while q is defined and smooth as a function of V = E-“II in a bounded 
open domain V E D,(diamD, -3). Moreover, q is assumed to be a continuous function of 
c E]O, %I. 

In what follows the Cauchy problem (1.2), (1.3) will be examined in the asymptotically large 
interval e-8, E[O, @a-‘] of the fast argument, where Q-l. In the general case it is difficult to 
use the averaging method because the system fails to be of the standard form (according to 
Bogolyubov’s terminology [3]). the reduction of a system with rapidly rotating phase 13, 41 01 
the form z~=g(cl, z) with a - h, where z =(x, u) and v = X, to (1.2) gives the expression 
f z c2q (without the term ep). We remark that q may be regular as a function of V = E-‘z~ and zr 
in the appropriate domains. When q is a smooth function of E, this follows directly from (1.3). 

The study of the dynamics of mechanical objects subjected to rapidly changing kinematic interactions 
and forces leads to systems such as (1.2), (1.3). F or example, see the problem of a pendulum with a 
vibrating point of suspension 12-61. The periodic motion of oscillatory or rotationally oscillatory systems 
(1.2), (1.3) with 9~0, i.e. x”=E&~, X, x’), has been analysed by the Lyapunov-Poincar~ methods [P. 21. 

Constructive conditions for the existence, uniqueness, and stability of those periodic motions x(9, E) that 
turn into x,,=u*~+x* for E=O, where u*, X* are certain constants, have been established. For the 
oscillatory components xj of x, we have $=O. The function p must be periodic with respect to the 

rotational components xi. We remark that the averaging method enables us to study such a system during 

a relatively short time interval 0 - 8, - E-“~ only (with a small parameter 8”). In the first approximation 

the corresponding averaged system will have the form x” = pa(x) in terms of the slow time z = L-““‘@. 

where pa(x)= (~(0, x, O)}, denote the mean values with respect to 0. If y = 0 in (1.3), which corresponds 

to the well-known case of rapidly rotating phase 13, 41, then the first approximation of the averaged 

system for (1.2), (1.3) has the form x”=q,,(x, x’), where the prime denotes a derivative with respe.ct to 

the slow time z = ~8 and q&x, x’)= (q(8, x, x’, 0)), is the average with respect to 8. We remark that the 
above system for ~=(n, x’) with rapidly rotating phase 01‘= hw(z)+A(B, z) can be reduced to the form 

(1.21, (1.3) with p I 0. 

We will now study the asymptotic behaviour of system (1.2) (1.3), which generalizes the 
previous ones. By analysing the approach developed in [3] to solve the problem of the 
oscillations of a pendulum with a vertically vibrating point of suspension, one can generalize 
the change employed and, when additional conditions for p(B, X, x’) are satisfied reduce the 
system to stationary form with parameter E. 

2. REDUCTION OF THE SYSTEM TO STANDARD FORM 

The additional condition 

is imposed on p = p(8, X, u>. 

This equality has a well-defined mechanical meaning. If the velocity 2) = 0 at some instant, 
then the mean increment due to p vanishes. When (2.1) is satisfied, the function p* (0, x), 

defined by integrating ~(0, X, 0), is uniformly bounded or admits of a uniform average with 
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respect to 8. We have 

p*(e, X) = Ip(e, X, ojde, 1p7 a c, 8 2 eo, x e D, (2.2) 

where C = const. It is convenient to integrate from 8, to 8 in (2.2). These or other limits of 
integration are omitted for brevity. By analogy with J+,(X) in (2.1), we introduce p;(x), which 
can be obtained by averaging p * (0,x) in (2.2) over 8 

P&l = we, XNe, x E Dx (2.3) 

Using the functions p* and pt given by (2.2) and (2.3), we define a function p**(C), x) which 
is uniformly bounded or admits of uniform averages and can be constructed in the same way as 
p* in (2.2) 

p**(e, XI = lb*(e, XI - pLx))lde (2.4) 

We will now use the above functions p*, p$, p** given by (2.2)-(2.4) to replace the original 
variable x and u= x’ in (1.2), (1.3) by new variables y and u as follows: 

x = Y + Ep**(e, Y), u = EU + ajm, Y) -p*h (2.5) 

We differentiate the expression for x with respect to 8 and equate it to 2) in accordance with 
(2.5). Solving the linear equation for y’ we get 

Y ’ = &Y@, y, u, E) (2.6) 
y(e, y, u, E) = [I + **ye, Y)I-14 P** = ap**ay 

Here I is the unit (n x n)-matrix and Y is a function admitting of a uniform average over 8. The 
latter can be represented as Y = (1 - EP * * + eZp * *’ - . . . )u. We note that the replacement (2.5) 
leads to an equation for y, the right-hand side of which is linear with respect to u with 
y’ = EU + O(EZ). 

We differentiate the expression for u in (2.5) with respect to 8 using (1.2), (1.3), (2.2)-(2.9, 
and expression (2.6) obtained for y’ 

d = ~24’ + Ep(e, Y, 0) + &*[p*(e, y) - p&)]y(e, y, U, I) = 

= fde, Y + EP**, EU + EC/ -J(J) + &*q(e, y + EJI+*, u + p* -pt E) (2.7) 

Here the dependence of the known functions p*, A, p** on 8 and y is omitted for brevity. 
The (nx n) square matrices P*(B, y) and P:(y) = (P*(8, y)X can be defined in the same way as 
P * *(0, y), namely P* = py and PO* = p,$*,‘. 

On dividing by & > 0, Eq. (2.7) can be solved in an elementary way for u’ 

d = &u(e, y, U, E) 

EU = de, Y + EP*, ~lc + &(p* - pi) - p(e, Y, 0) - E(P* -pt~ + 4(e, y + g+, u + 

+ P* -pi. E) = flxp** + flvb + P* - p’o> - I@ -j&14 + 4q(e, y, u + 

+ P* -pii, 0) + E*..., P,,~ = &de, Y, 0) 

(2.8) 

Note that the right-hand side of (2.8) turns out to be a non-linear function of u even in the 
first approximation in & because of the assumed dependence of q on E%. 
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Thus one obtains the system (2.6), (2.8) of 2n equations with the new unknowns y and u, 
which is of standard form [3-6]. The initial values ~(8,) and z&3,) can be obtained from (2.5). 
We will assume that the integration in (2.2) and (2.4) is carried out in the limits from 8, to 8. 
Then 

y(e,) = y0 = x0, u(e,) = ~0 = vo (2.9 

It follows that the desired standard system of equations with parameter E and the initial 
conditions are completely defined by (2.6), (2.8) and (2.9). It can be subjected to further 
analysis based on developed methods of separation of variables ([3-6], etc.). 

The above scheme for reduction to standard form can be generalized and extended to a 
system of the form 

x” = F(ht, X, x’, z; h), Z‘ = G&r, X, X.+, Z; h) (2.10) 

(Z is a vector of arbitrary dimension m 30 and the initial values X0, V”, Z” are given). To 
this end, in the same way as above, we introduce in (2.10) the fast time 8 = ht, the functions 
x(8)= X(t) and z(e)= Z(t), and the following representations of the right-hand sides (the 
prime denotes a derivative with respect to 0) 

fle, X, XI, z, E) 3 h-*F(e, X, w, 2; h), E = h-1 

~$9, x, E-lx’, z; E) = ;L-‘G(6, x, hr’, z; h) 

(2.11 j 

As a result we obtain a dynamical system of the form (1.2), (1.3) with a “slowly changing 
parameter” [3,4] 

x’=u, u’ =f(Q, x, u, z, E), 2’ = &g(o, x, &--%, 2, E) (2.12) 

f= &p(6, x, 0, z) + &*q(& x, E-b, 2, E) 

Using a replacement of the type (2.5) from x, u to y, u, which also depends on h(z -+ h), we 
obtain the equations in standard form 

y’ = &Y(fJ, y, u, h, &), y(0,) = y” =x0 

u’ = &U@, y, u, h, E), ~(0,) = u” = p (2.13) 

h’ = H(c), y, it, h, E), h(tlO) = ho = Z@ 

The functions Y, U and H are defined in the domain 8 z= 8,, y E D,, u E &, h E D, under 
consideration for sufficiently small E E[O, .a01 and have a uniform average with respect to 8. 
They will be smooth if the functions p, 9 and g are smooth. The right-hand sides in (2.13) are 
defined by analogy with (2.6) and (2.8) as follows: 

The notation pa, q*, and g* means that the variables I, 2) and z in p, q and g in (2.12) are 
replaced by 

x = y + $*(e, y, hl, 2) = cu + ~lj?(0, y, h) - p’ocy, h)), z = h (2.15) 
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The function pz is equal to p* when c = O9 i.e. x = y, 2) = 0, and z = h. It follows that 
ps -p z = O(E) (see (2.8)). The functions p*, pi, and p ** can be conducted by the scheme 
(2.1)-(2.4), taking into account that p depends on z = h in accordance with (2.12). We remark 
that the matrices with subscript y have dimensions n xn, while those with subscript h have 
dimensions n x na. In the fist approximation with respect to E the expressions for the functions 
in (2.14) are given below, see (3.6). 

3. ANALYSIS OF THE SYSTEM IN THE FIRST APPROXIMATION 

Consider the Cauchy problem (2.5), (2.8), (2.3) in the first approximation with respect to E. 
Discarding terms O(e’), we get 

where C,,t P*, f% P* , P% P** are independent of UI. Averaging with respect to the explicit 
argument 8 and intr~u~ing the original time t = ~8, we obtain the following averaged system 
in the first a#roximation with respect to E, in which t does not appear explicitly 

For n= 1 the system can be studied by phase-plane methods 131. The structure of (3.2) 
enables one to express it as a vector equation of the second order 

Y” = rot) + NYW + 4065 Y’h YGO) = 9, Y’OO) = uo (3.3) 

Comparison of (1.2) and (3.3) reveals that these equations differ in a non-trivia1 way. 
Consider the stationa~ points of (3.2). One can easily establish that these points are 

y* = ~gIr64 * 40th ON, U* = 0 (0 fc ~“1 (3.4) 

If au ad~ssible root y” E D, exists, then the real parts of the characteristic exponents of the 
variational system determine whether the stationary solution of (3.2) or (3.3) is stable or 
unstable [l]. Tbe corresponding characteristic equation can be expressed as 

Solving the algebraic equation (3.5) of degree 2n with respect to x, we get 

%k = A@(X), & = ok + irk* k = 1, 2,..., 2n 

The condition for asymptoti& stability of the solution (3.4) of the averaged system (3.2) has 
theform o,<O (k=1,2,..., 2n). The solution is unstable if at least one of the numbers o, is 
greater than zero, The condition for asymptotic stability implies that the solutions of the 
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original and averaged systems are close, in particular E-close, to one another for I ~ft~,~), see 

13341. 
According to (2.12) and (2.14), in the first approximation with respect to E the equations in 

terms of the osculating variables for the system (2.12) with variable parameters can be 
obtained by discarding the terms O(E’) in (2.14) 

Y ’ = e(u - P ;‘g:), h’ = e&i 

u’ = EP, p** + &P&4 + p* - pi) + E(p; - P&u - &tl) - E(P*h - P&$ -I- &qt 13.6) 

The symbols gz, q$ mean that one can set E = 0 without loss of accuracy when g, and q .+ 
are smooth functions of E. The averaged system will be an autonomic system of order 2n + m. 
Its structure will be quite general. The stationary points and their stabifity can be determined 
in the usual way (see Section 4). Note that in a number of problems the time dependence of la 
can be deter~ned expficitly in the form k = /z(t) or h’ = g,(h). This may also mean that the time 
f appears twice in (l.l), namely, F = F(t, ht, X, X’; h). 

4. EXAMPLES 

4.1. A non-linear oscillator with variable parameters 
Consider a dynamite, and in particular a rotation&y oscillatory system with one degree of freedom 

subjected to high-frequency interactions [2, 61 

x” +Q(x,z) = P(vr,x,x,z;v), z = ~(vt,x,x,z;v) (4.1 ) 

Were x is a scalar variable (a displacement or angle), z is the parameter vector (the mass-inertia 
characteristics, rigidity, the length of a pendulum, etc.). The initial values are given. The large parameter v 
(v -_) -) characterizes the frequency of the external kinematic interaction or force. When P I 0 and Z 3 0 
system (4.1) for n is conservative and can be solved completely in quadratures. 

We introduce the fast time 9 = vt, which is the phase of the external interaction. When x’ = vx’ and 

z’ = vz’ system (4.1) can be transfo~ed into the form (2.12) 

x” =fie. x, x’, z, E), fs E2V’ - Q,. E = V-’ (4.2) 

z’ = &g(e, *, E-lx’, 2, E), g = 2 

According to Section 1 (see (1.2)), f or g may fail to be regular functions of v = x’. We assume that f 

defined in (4.2) has the structure (1.3) 

f- E&t+, X, U, 2) + E29(0, X, E-k Z, &) (4.3) 

where p and q are regular functions of their arguments, We note that g and q are regular functions ot 

V = E% and may also be smooth functions of U. 
We shall consider some special cases of (4.3). Let Q be an arbitrary function and let P = P(vr. z : V) and 

2 z 0. Then 2 = const and the averaged variables y and zc are governed by the autonomous system of 

equations 

y’ = u, ‘4’ = -Q(Y, z) + a(z), 2 = const 

In accordance with (4.2), it is assumed that f = E6(0, z)+ &*a(~)- E’Q(x, z), where (48, zj) 3 0. The system 
may have stationary points U* = 0, y*(t) = Arg(a- Q). If p = -QI> 0 for some y = y*, then xIt =&pi’* and 
the given pointy*, U* is exponentially unstable. A critical situation arises when p<O. Suppose that the 
system contains a dissipative interaction -&(0, x. E-%, 2)~ such that 
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Then the averaged system will admit of the given stationary points y *, u*. If p > 0 and/or k, < 0 for some 
point y*, u *. then the point is exponentially unstable. When p c 0 and K > 0, the point is exponentially 
stable. The case when p = 0 and tcO > 0 is critical. Note that by (3.6) parametric excitation of system (1.4)- 
(4.3) is also possible in the case when (Z) B 0, i.e. z = const in the first approximation with respect to E. 

4.2. A simple pendulum of variable length 
Consider the equations of motion 

Ml% + Mgl sin x =-~MUIX’-K(I)XI+A(~,~)+B(~,V~,I;V) (4.4) 

1. = D(t,vr,x..r,l;v) 

of a simple pendulum of variable length taking into account the torques of viscous friction forces and 
external interactions. Here x is the angle of deflection from the lowest equilibrium position, M is the 
mass, I is the length, g is the acceleration due to gravity, K is the coefficient of friction, A and B are the 

slow and rapidly oscillating external torque components, and D is a function of the rate of variation of the 
length. The functions A, B and D may depend on 1. We transform system (4.4), which is of the form (4.1), 
into the form (4.2), (4.3). We introduce the fast phase 8= vt and separate the first equation for M?v2 in 

(4.4) and the second equation for v. We obtain 

x”=~2[b-(2di+k)x’]+&z~“(a-g~sinx)r~2b+e2~~2[a-g~sinx-(2d~~k)e~’x’] 

l’=Ed(t,B.x.e-‘x’,l,e), fre., e=v-’ 

a=AM*‘, b = v-‘EM-‘, k=Khf-‘, dmD 

(4.5) 

Since (b), I 0 by assumption, it follows from Section 2 that (4.5) can be reduced to the standard form 
(2.13), (2.14) by the replacement (2.15). In the first approximation with respect to E we get 

y’=E[U-(1-26*‘);d?-I-2b:Y] 

u’=&l-2[o-gisiny-(2&+k)(u+l-2(6’-9’))]- 

-e[(I-2(b*-q;))~~+I-2(b*-~)jJ (4.6) 

V=E(e -ed(f.e,y,~+~-~(b*-~),~.o) 

According to Section 3, the first approximation of the averaged system can be obtained by averaging 

over 8. The “slow” time t is regarded as a parameter. We observe that the average values of b*- bg and 

(b* - bz ):, i.e. the last two terms in the equation for u’ in (4.6), are certainly equal to zero. We shall 

consider some special cases of a, b, and d$. Let d0 = 0 and let a and b be independent of t. Then, in terms 
of the original time i, we have 

Y=u. iI’ =f2[a(I)-gfsiny-k(I)u], i=P (4.7) 

For I r f c 1 and r =u(gl’)” system (4.7) has stationary points U* = 0, y* = arc&r. The variational 
equations have one vanishing characteristic exponent, which corresponds to 1. The other two are deter- 

mined by the roots of the quadratic equation x2 + (Z”)-2& + g(l”)-‘cosy* = 0. For one of the numbers 

y *(mod2x) we have cosy* > 0 and both roots have negative real parts. For the other number cosy* < 0, 

and one of the exponents is positive. It follows that for a pendulum of constant length ( d ~0 and 

I=const) with Ir(l)I< 1 one of the states of equilibrium in the system under consideration is 
~ymptotica~y stable, while the other one is unstable. The case I r I= 1 is critical. 

We assume that d$ in (4.6) does not depend explicitly on the phase 8. Then the averaged equations will 
be considerabIy simplified. In terms of the slow time t we have 

(4-g) 
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Moreover, if a, b and di do not depend explicitly on t, then the stationary points of (4.8) can be 
determined in the usual way. To fix our ideas, we take di= ~(1, -l), where c>O and 1> 0 are given 
constants. Then 14 I0 exponentially with exponent -c<O. The stationary points of (4.8). can be 
determined in the same way as those of (4.7) namely, y* = arcsinr(l,), u* = 0, and E* = 1, if I r(l,) I c 1. One 

of the characteristic exponents is equal to -c, the other two being the roots of the aforesaid quadratic 
equation with 1’ = I,. The exponential stability and conditions of instability have been established before. 

Let us consider how the motion of the pendulum is affected by rapid variations of the length. Let the 
functions b = b(8) and dg = d$ (0) be independent of t and 1. Then, on averaging (4.6) over 8, we obtain 

y’=u+2r3(b-a$). L=(d) (4.9) 

II'=/-*(a-glsiny-ku) 

Even in the case when (dS)=O(l-1’) remains in the first equation for y , the term 2(b* *d$ is, in 

general, non-zero. In this case the system may have stationary points, which can be studied in the usual 

way. We remark that for the above model as well as for more general ones, problems concerned with the 
parametric control of oscillations and rotations by periodic variations of the length can be stated and 

studied approximately [6]. 

4.3. A plastic model of the variation in pendulum length 
We consider a quasistationary model of the variations in the length 1 of a pendulum due to plastic 

deformations of the “thread” caused by tension [4], the magnitude of which we take to be 

E = Mgcosx+ M/x2. We assume that the deformation rate is proportional to the tension, namely, 1. = ICE’, 

where the coefficient K > 0 may depend on 1. We assume that this relation holds for positive as well as 

negative values of E. 

By (4.6), in the first approximation the averaged equations take the form 

y.=u-K&@$J;, r-=K.?$ 

u~=/"[a-glsiny-(2~I+k)~]-2d~~~(2(~*~)u+f~*(~*~)) 

i$=M(gcosy+lu*+I-3(Ab*2)). Ab* =b’-i.$ 

(4.10) 

Here we assume for simplicity that a and b are independent of t. 

System (4.10) can be studied by numerical and qualitative methods. To determine the stationary points 
y*, u* and I*, we shall consider the simplest case when a = const, bz * = 0, and (Ab*3) = 0. Then we obtain 

the relationships 

u*=O, a-glsiny=O, gcosy+le3(Ab**)=0 

The second equality constitutes the equilibrium condition and the third one means that the average 
length is constant, i.e. there is no tension. On eliminating 1, we obtain the transcendental equation 

sin3y =-ecosy for y, e=a3(g2(Ab*‘))-‘being an arbitrary parameter. This equation can be reduced to a 
cubic equation of the form \‘-e2(1-&=O with 13 5 3 0 for the unknown 5 = sin* y. The graphical 

analysis of the transcendental equation for y reveals that the interval 0 c y < 27t contains two roots y; 

such that 0 G y r < R and y; = y: + R, independently of the value and sign of e # 0. As a result, we obtain 
two stationary points yT2, 0, I&, from which to choose the point that corresponds to positive length 

Z: = a(gsiny T,)-‘. Namely, we set y = y: (siny rJ 2 0) if a Z 0. 

The problem of stability involves an analysis of the roots of the characteristic equation, which has a 

rather complex form. In the limiting case when a = 0 (e = 0) the roots are yr=O and y: = n. From the 
condition that I* must be positive we find the admissible value y* = y: = IL. Then 1* = ((Ab*2)g-1)1’3 and 
the characteristic equation splits into the above quadratic and linear equations. The quadratic equation 
implies that the upper equilibrium state y* = w is exponentially unstable. This is also the case for small 
a # 0. We note that the upper equilibrium state can be made asymptotically stable by vibrations of the 
point of suspension [3, 4, 61, see below. The case when a is asymptotically large leads to the lateral 

equilibrium states y rz = _ + 1/27(+O(e-‘), which also turn out to be exponentially unstable. 
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4.4. A ~end~urn with Q ~ibr~~g point of s~~e~i~~ 
We will consider the model described in Section 4.3 under the assumption that the pendulum is 

subjected to kinematic perturbations due to planar oscillations 5 = &vt), q= rl(vr) of the point of 
suspension, rather than the torque A+B of external forces about the axis. Here 5 is the horizontal 

displacement and IJ is the vertical displacement. The equations of motion of the type (4.2)-(4.4) take the 

form 

MPX + Mgl sin x = -2HhcEr - Kx - Mlv2W 

t=tcE, K=const, W=~cosx+n”sinr 
(4.11) 

On introducing the argument 8=vt and dividing by MZ? and v, we obtain a system of the form (4.5), 
in which we set 

p = r’w(e,x), 5” = a&:: q” = 6 

qt-t2(gfsinx+21CIEE-4)+fe-'U~ u=i (4.12) 

d=?&aUcbf[gcesx+f@~‘u)21 

In place of x and 2) we introduce the variables y and u by (2.5). In the first approximation we obtain the 
system (see (3.6)) 

y’=e[u+1”S(B,y)xEEl, Smx.cosy+q.siny 

u'=ef-t(w;)*s-ET'~(u+TZsKE)+ 

+~2VrCE-ef”[glSiny+(2hcEek)(u+T’V)] 

r=aKM[geesy+I(u+r’v)2], v=s;; 

(4.13) 

The system of equations (4.13) is quite complex. After averaging, using the fact that S is periodic and 
the mean values of V and W with respect to 8 are equal to zero, we obtain much simpler equations. To fii 
our ideas, suppose that the point of suspension undergoes only vertical harmonic oscillations I& = ?& sin0 
(5, B 0). We observe that after introducing the parameter E = v-‘, q* and n,, will have the dimension of 
velocity by (4.12). In terms of the slow (original) time we obtain an averaged system of the form 

y=tr, i.=rCM(g~osy+fu~+lqf~sin~y) 

16=-~Pq$sinycosy-gT'siny-i-~kz8- (4.14) 

-2xit4t’u(gcesy+~SC-‘i&sin2+lu2) 

The stationary points of (4.14) can be determined from the equations (u* = 0) 

gcosy+j$I-'$sin'y=O. (KP$cosy+g)siny=O 

Since y = 0, x are not roots, after dividing the second equation by sin y we obtain the relationship 

sin2 y = cos’ y, from which to determine y. We obtain four values yr= x14+ 112x@- 1) (j = 1, 2,3,4). It is 

interesting that the stationary values yr are iudependent of the parameters of the system. The admissible 

value yj* can be determined from the condition If>O. Since l~=-lf2q~,-‘cosy~, we take yz=3rt14 and 
y:=Sn14. Then 1& =$(242g)-‘. 

The values yr4 lead to negative 1: . Below, as above, we analyse the stability of the resulting states of 
equilibrium. One of them is usually exponentially unstable while the other one is stable. 

We consider the limiting case when K = 0, i.e. I= const. Then we obtain the extensively studied (3,4] 
system (4.14) for y and u. We have the stationary value u*= 0, and y * can be determined from the 
equation siny(lf2$cosy+gf)=O. It follows that y:=O and yf=x, y: being the asymptotically stable 
lower state of equ~ibri~. The upper state yif is exponentially unstable if g1> l/2& It is asymptotically 
stable if 1/2~: > gL Then two exponentially unstable states y& = farccos(-2g&,z) determined by the 
roots of the factor in brackets appear between the upper and the lower states yt and yr The case 
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l/21-$, = gl is critical. the value y:= 0 corresponds to an asymptotically stable equilibrium. There is one 

zero characteristic exponent corresponding to y: = y: = y: = II (the other one is negative). A similar 

result can be obtained in the case when 1 varies according to the equation l’= ~(1, - 1) or in a similar way. 

In the conclusion we consider the case of arbitrary planar vibrations of the point of suspension when 
the length I is constant. System (4.13) implies the following averaged equations for y and u 

y=u, u =f2[~((~z)-(1);2))sia2y-(~~)cos2y-glsiny-kc] (4.15) 

The states of equilibrium of (4.15) are determined by the roots of the equations (u* =O), which can be 
reduced to a fourth-degree algebraic equation in the unknown sin y. Using elementary trigonometric 
transformations, it can be represented as the transcendental relationship siny = psin(2y +cp), where p > 0 

and 0 c cp < 27~ are constants determined by the coefficients of the equation. The latter can be studied and 

solved by graphical and numerical methods by constructing a one-parameter family of curves, for 

example, of the form p-’ = sin(2y+(p)lsiny, where 0 <y < 2~ is the argument and 06:cp < 2n is a 

parameter. 

Let the vibrations be such that (y* q’*) = 0. This is a situation similar to that considered above. The 
quantities yr can be determined from the equation siny(l+acosy)= 0, but here a=((q’i)-(r:))(gf)-” 
can be positive, negative, or zero. When I a I< 1 there are two stationary points y F= 0, which is 
asymptotically stable, and y: = 71, which is exponentially unstable. If a > 1, then the two equilibrium states 
are stable and the additional points y & = arccos(-a-‘) are unstable (exponentially). Furthermore, if 

a c-1, then the lower and upper states y> will be unstable, while the lateral states y3Td will by 
asymptotically stable. When a = 1, the lower equilibrium state yr remains stable (as for a > l), while the 

upper state yz does not (the critical case). Finally, if a = -1, the upper state yz is exponentially unstable 
and the lower state is critical. 

Note that the equality (c*, q’*) = 0 holds, in particular, when c* I 0 or rl’* P 0. The case y* I 0, in 

which a = (q’:)(gl)-’ > 0, has been considered before. In the case of horizontal oscillations (q’* = 0) we 

have a = -(5;” )(gl)-’ < 0. In the general case this means that 5;(O) and q’* (0) are “orthogonal”, for 

example, r* is an odd and q’* is an even function of 8. To be specific, one can consider the motion of the 
point of suspension along an ellipse: 5, = 5, cos0 and G = Q sine, where 5, and r(, are the semi-axes. 
Then (r.+ TJ’.J = 0 and the parameter a = l/2(7$ - ci)(gl)“ can take any values, see above. 
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